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We study the dynamic critical behavior of the BFACF algorithm for generating 
self-avoiding walks with variable length and fixed endpoints. We argue theoreti- 
cally, and confirm by Monte Carlo simulations in dimensions 2, 3, and 4, that 
the autocorrelation time scales as ~mt.N ~ ~ 4  ~ (N)4L 
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In recent years there has been a widespread use of dynamic Monte Carlo 
methods as a tool for studying the static properties of statistical-mechanical 
systems. (1'2) These studies have, however, been hampered by critical 
slowing-down: (3) the autocorrelation time ~ of the Monte Carlo stochastic 
process grows to infinity as the critical point is approached, which leads to 
a corresponding growth in the statistical error bars. 

In this paper we study the dynamic critical behavior of an algorithm 
for simulating self-avoiding walks (SAW) with variable length and fixed 
endpoints, due to Berg and Foerster (4~ and Aragfio de Carvalho, 
Caracciolo, and Fr6hlich, (~,6) hereafter called BFACF. For the SAW, 
criticality corresponds to the long-chain limit. The autocorrelation time of 
the Monte Carlo stochastic dynamics behaves asymptotically as 

"c~ ( N )  p (1)  

where N is the number of steps in the walk. This defines a dynamic critical 
exponent p which is the object of this study. 
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Let us give a brief description of the BFACF algorithm (for details, see 
ref. 7, Section 3.1). It generates SAWs of variable length N which begin at 
the origin and end at a fixed lattice site x-r 0; the elementary moves are 
local deformations of the chain with AN=O, _+2. It satisfies detailed 
balance with respect to a modified canonical ensemble in which each 
N-step walk gets relative weight N/~ N, where /~ satisfies 0< /~</3  c - 1//~ 
and # is the connective constant of the lattice. The algorithm is known 
to be ergodic in d=2/8); it is nonergodic in d = 3  if Ixl~--- 
max(Ixll, [x21, Ix3I)= 1, because of knotted configurations which cannot be 
untied. In all other cases the problem of ergodicity is still open. 

The dynamical behavior of the BFACF algorithm is rather peculiar. 
To clarify this point, let us define more precisely what we mean by 
autocorrelation time. Let A be an observable and let 

(A(0) A(t) ) - (A(0))2  
p A~( t ) -  ( A ( 0 ) 2 ) _  (A(0))2  (2) 

be its normalized time-autocorrelation function in the stationary stochastic 
process (i.e., in equilibrium). Typically, pAA(I) decays exponentially for large 
t, and thus it is natural to define the exponential autocorrelation time 

t 

r~xv, A = lim,4oosup - l o g  Ip~A(t)l (3) 

and 
rexp = sup rexp, A (4) 

A 

where the supremum is taken over all observables A with finite second 
moment. ~'exp controls the "worst-case" rate of convergence to equilibrium; 
in practical terms it places an upper bound on the number of iterations 
which must be discarded at the beginning of the run. The other quantity of 
interest is the integrated autocorrelation time 

'~int, A 2 t =  --oc IOAA(t) ( 5 )  

which controls the statistical error in the Monte Carlo measurements of 
( A ) .  Indeed, the variance of the sample mean A is given by 

var(.,/) ~_1 (2rint, a)[  (A2)  _ ( A ) 2 ]  (6) 
n 

where n is the number of measurements. 
For  the BFACF algorithm, Sokal and Thomas (9~ have proven the 

surprising result that rexp = oe for all /~ > 0. This means that for most 
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observables A the autocorrelation function pAA(t) decays nonexponentially 
as t ~ oo. However, there is nothing to prevent ~'int, A from being finite, and 
indeed one expects rint, A < oo for reasonable observables A, i.e., those that 
are not too strongly coupled to very long walks. It then makes sense to 
study the dynamic critical exponent PA defined as "tint, A ~ ( N )  pA for/~ ]"/~c- 

For  fixed-N algorithms using local deformations (i.e., A N =  0 only), it 
can be argued heuristically that p ~ 2 + 2 v .  (1~ This estimate is based on 
considering the motion of the center-of-mass vector of the Chain. Roughly 
speaking, the center-of-mass vector executes a random walk, moving a 
distance of order 1IN at each elementary move. An "essentially new" 
configuration is reached when this point has moved a distance of order 
~--- (Rg2)I /2~N ~ (here Rg is the radius of gyration of the chain). For 
this to occur it takes about ( N ~ ) 2 ~ N  2+2v elementary moves. This 
argument can also be converted into a rigorous proof of the lower bound 
PA ~>2+2v, where A is the center-of-mass vector of the chain (ref. 7, 
Example 3 after Theorem A.7). 

This reasoning does not, however, apply to the BFACF algorithm, 
because the A N =  +2 moves cause the center-of-mass vector to move a 
distance of order ~/N ~ N ~- ~ ~> l/N; indeed, applying the same argument 
would give p ~ 2 .  Moreover, all these arguments are based on the 
hypothesis that the center-of-mass motion plays the role of the slowest- 
relaxing mode. However, the results of Sokal and Thomas (9) suggest 
another cause of the slow relaxation of the BFACF algorithm. 

Consider for a given walk co the minimum surface area d(co)  spanned 
by the union of co and co', where co' is a fixed walk from the origin to x. 
The Sokal-Thomas proof that rex v=  +o0 is based on showing that the 
BCACF algorithm has very slowly relaxing modes associated with tran- 
sitions to very long walks whose surface area is much greater than their 
length. Using this same idea, one can also prove (ref. 7, Example 1 after 
Theorem A.7) that 

"Cint,.~ ~ const x [ - ~ 2 )  - -  ( ~ ) 2 ]  (7) 

Assuming the usual scaling behavior ~ ~ ~2,(H-~6),4 this implies 

( ( N )  3 for d = 2  

~ ) ( N )  ~ 2 " 3 5 _  ~- for d = 3  
"tint, o~ ~,~ ~4 ~ ( N )  4v (8) 

] ( N ) 2 ( l o g ( N ) )  m for d = 4  
! 

~ ( N )  2 for d > 4  

4 In two dimensions this scaling behavior seems to be well established both theoretically ~12'13} 
and numerically, (~,~4 J6) but  we are not  aware of any theoretical or numerical work in higher 
dimensions. Indeed, it seems to be a rather difficult computational-geometry problem to 
devise an efficient algorithm for computing the min imum surface area spanned by a 
self-avoiding polygon in dimension d ~> 3. 
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and hence po~/> 4v. In  the absence of any addi t ional  physical mechanism 
for slow modes, it is reasonable to expect that this b o u n d  is close to sharp. 

It is also reasonable to expect that  other "natural"  observables, such as the 
chain length N, should have the same dynamic  critical exponent  p = 4v. 

In a previous paper (1~ we performed an extensive Monte  Carlo 

s imulat ion of the B F A C F  algori thm for both  SAWs and nonreversal  
r andom walks (NRRWs)  in two dimensions,  obta in ing  

3.0_+ 0.4 for d =  2 SAW 

P A =  2 .2+0 .5  for d = 2 N R R W  
(9) 

(95% subjective confidence limits) for A = N, N 2, N 3. This rules out the 

relation p = 2 + 2 v =  3.5 (SAW), 3.0 (NRRW),  but  is consistent with 

p = 4v = 3.0 (SAW), 2.0 (NRRW).  

In  the present work we augment  the previous data in two ways: for the 

two-dimensional  SAW, we have added an addi t ional  point  at f l=0.3771,  
closer to criticality; and we have now studied also SAWs in three and four 

dimensions. 
In Tables I - I I I  we report  the parameters of our runs and the estimated 

values of ( N )  and tint. N. In  all cases we chose the endpoin t  x to be a 
nearest neighbor  of the origin.5 We have analyzed the data using s tandard 
procedures of statistical time-series analysis, following ref. 21, Appendix C. 

We have used in all cases a self-consistent rectangular  window of width 

10"Cim, N. 

5 For d= 3, the algorithm is nonergodic for this choice of x, because of knotted configurations 
which cannot be untied. However, in a separate study (2~ using the BFACF algorithm com- 
bined with 2-pivot cut-and-paste moves(71--an algorithm which is ergodic~e found that 
for N<200, less than 0.1% of the configurations are knotted. So the effects of knots are 
probably negligible in the simulations reported here. 

Table l .  Parameters and Results of Our Runs for d = 2 "  

Data-taking 
1~ (N) interval run length z,m,N 

0.3690 21.5 7000 3.5 X 109 ~ 60000Z-mt, N 56800 +_ I000 
0.3728 33.6 17000 8.5 x 109 ~ 40000"c,m ' N 227000 + 8000 
0.3744 44.4 22000 1.65 x 10 l~ ~ 35000rmt, U 470000 __+ 17000 
0.3760 72.8 140000 3.5 X 10 l~ ~ 20000rim, u 1940000 _+ 90000 
0.3771 103.0 1000000 2.0 X 1010 ~ 3000"Cmt, U 6240000 _+ 700000 

aErrors are _+ one standard deviation. Errors on (N) are less than 3%. Note that 
,6c ~, 0.379052. I171 
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T a b l e l l .  Parameters  and Results of  Our  Runs for  d = 3  ~ 
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Data-taking 
/3 ( N )  interval Run length "~lnt, N 

0.2110 33.5 1000 2.3 • 109 ~ 15000"Cmt, N 154000 _+ 8000 
0.2115 41.2 5000 3.0 X 109 ~ 7000"Cmt, N 459000 _-t_- 36000 
0.2120 52.1 10000 7.0 x 109 ~ 12000rmt, N 570000 _+ 33000 
0.2125 72.8 100000 1.3 • 1010 ~ 10000Tmt, N 1346000 _+ 90000 
0.2130 123.8 150000 1.0 x 101~ ~ 2000L~t,N 4497000 + 600000 
0.2132 221.2 200000 4.5 x 10 l~ ~ 3000Tmt.x 16128000 _+ 1900000 

aErrors are _+ one standard deviation. Errors on ( N )  are less than 3%. Note that 
/3c ~ 0.2135. <18) 

T h e  nex t  s tep is to e s t ima te  the  d y n a m i c  cr i t ical  e x p o n e n t  p, us ing a 

we igh t ed  l eas t - squares  fit to the  r e l a t ion  

log  Tint, N = a + p l o g ( N }  (10) 

( In  this fit we neglec t  the  e r r o r  bars  on  ( N } ,  which  are  smal l  c o m p a r e d  to 

those  on  Zlnt, N-) U n f o r t u n a t e l y ,  this analysis  is s o m e w h a t  subtle,  due  to 

co r r ec t i ons  to  scal ing:  especia l ly  for  d =  3, 4 there  is subs tan t i a l  c u r v a t u r e  

in a log - log  plot ,  w h e n  ( N }  < 3 0 ~ 0 .  W e  there fore  pe r fo rmed ,  for each  

d imens ion ,  a s equence  of  l eas t - squares  fits in wh ich  on ly  those  d a t a  po in t s  

h a v i n g  /?~>/?min are  inc luded  in the  fit. T h e  resul ts  of  this analysis  are  

s h o w n  in T a b l e  IV. T h e  e r ro r  bars  on  p and  a are  one  s t a n d a r d  dev ia t ion ,  

c o m p u t e d  us ing  the  r a w - d a t a  e r ro r  bars  f r o m  Tab les  I - I I I  (ref. 22, 

C h a p t e r  3). T h e  ~2 va lue  can  then  be used as a test  of  goodness-of- f i t .  

T a b l e l l l .  Pa ramete rs  and Results o f  Our  Runs for  d = 4  a 

Data-taking 
/3 ( N )  interval Run length ~'int, N 

0.1465 26.0 12000 2.28 • 109 ,~  10000Trot,:, / 228588 __+ 14500 
0.1470 43.4 30000 9.60 X 109 ~ 6000Z'mt, N 1548600 ___ 124000 
0.1473 67.3 100000 3.36 x 101~ ~ 8000zint, n 3961000 _+ 272000 
0.1475 106.1 400000 8.00 x 101~ ~ 6000Tmt, N 14156000 + 1200000 
0.1476 311.4 800000 6.60 X 1010 ~ 1000Zmt.N 78344000 ___ 17000000 

aErrors are _+ one standard deviation. Errors on ( N )  are less than 7%. Note that 
tic ~ 0-1477"(19) 
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Table IV. Results of Least-Squares Fits to the P o w e r - L a w  Ansatz (10)  a 

d /~m,n P a ~2 

2 0.3690 2.93 _+ 0.03 1.97 -+ 0.11 6.36 (3 d.f., level = 10 % ) 
2 0.3728 2.84 _+ 0.07 2.33 _+0.25 3.88 (2 d.f., level = 14%) 
2 0.3744 2.95 _+0.10 1.86-+0.40 t.55 (1 d.f., level= 21%) 

3 0.2110 2.46 _+ 0.06 3.49 -+ 0.23 42.29 (4 d.f., level = 10 -~) 
3 0.2115 2.20__0.07 4.68 +0.31 9.78 (3 d.f., level = 2%) 
3 0.2120 2.32___0.09 4.10-+0.37 1.06 (2 d.f., level = 59 %) 
3 0.2125 2.24+0.12 4.52-+0.55 0.02 (1 d.f., level = 89 % ) 

4 0.1465 2 .71_+0 .06  3.73_+0.24 54.61 (3 d.f., level = 8 x 10 12) 
4 0.1470 2 .21_+0 .10  5.95_+0.4l 11.40 (2 d.f., level = 0.3 %) 
4 0.1473 2.15 _+ 0.14 6.26 _+ 0.61 10.94 (1 d.f., level = 0.1%) 

a Errors are _+ one standard deviation. Significance level is the probability that 7, 2 exceeds the 
observed value. 

F o r  d =  2, the goodness-of- f i t  is acceptab le  ( t hough  n o t  great) ;  it gets 
sl ightly be t te r  if the lowest  one  or two po in t s  ( < N >  ~ 21, 34) are d ropped .  

The  es t imate  p = 2.93 _ 0.03 is on ly  sl ightly lower  t h a n  the  pred ic ted  lower  
b o u n d  p ~> 4v = 3. Indeed ,  if one  believes the lower  b o u n d  p />  4v, t hen  ou r  
n u m e r i c a l  resul t  is s t rong  evidence  tha t  this lower  b o u n d  is sharp (or  close 

to sharp) ,  i.e., t ha t  p is equal (or  a lmos t  equa l )  to 4v. 
F o r  d =  3, the goodness-of- f i t  is acceptab le  on ly  if the lowest  two 

po in t s  ( ( N >  ~ 33, 41)  are d ropped .  6 The  resu l t ing  es t imate  p = 2 . 3 2  + 0 . 0 9  

is in excel lent  ag r e eme n t  wi th  the pred ic ted  lower  b o u n d  p i> 4v ~ 2.35, a n d  
indeed  wi th  the equa l i ty  p = 4v. 

F o r  d =  4, the es t imates  of p decrease t oward  2 as /3mi n is increased,  
bu t  it is imposs ib le  to get a r ea sonab l e  goodness-of-f i t  no  m a t t e r  how m a n y  

po in t s  are d ropped .  Indeed ,  one  can  foresee tha t  in d i m e n s i o n  d = 4  the 
Ansa tz  (10) shou ld  be cor rec ted  by  a log- log term,  as l oga r i thmic  viola-  
t ions  of s imple  power - l aw scal ing are  expected in  view of (8). W e  therefore 
t r ied also a fit to the express ion  

log Tint, N = a + 2 l o g ( N )  + q log l o g ( N )  (11) 

6 It is plausible that as the dimension d increases, a larger N is needed in order for the walk 
to "explore" adequately the d-dimensional space: at smaller values of N, the walk acts as if 
it lives primarily in a lower-dimensional subspace. This reasoning might explain also the sign 
of the observed deviation from pure power-law behavior: the estimated p for d=3 with 
/3ram = 0.2110 is shifted toward the d= 2 value. The same sign of deviation occurs for the 
d = 4 data discussed below. 
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The results are shown in Table V. Unfortunately, the goodness-of-fit is as 
poor here as for a simple power-law fit. Apparently, very strong corrections 
to scaling are present, and neither a simple power-law form nor a simple 
logarithmic form is a satisfactory approximation in the range 50<  
<N> ~< 300. Indeed, on theoretical grounds (23-25) one can expect corrections 
of the form log log<N)/log(N>, 1/log(N>, and so forth. So it is hardly 
surprising that we are unable to verify the conjectured behavior Tint. N 
<N> 2 ( log(N>)  1/2. In fact, we believe that it is impossible to distinguish 
numerically, at any feasible value of (N>,  between a logarithm and a small 
power. We conjecture that the logarithmic form is the correct one (quite 
possibly with q = 1/2), but this will have to be established by theoretical 
rather than numerical means. All we can say, on the basis of our present 
data, is that "~int, N grows a little bit faster than ( N )  2. 

In conclusion, our simulation results give strong (but not unequivocal) 
support to the conjecture that 

p=4v (12) 

i.e., that the surface area is indeed the slowest mode of the BFACF 
dynamics. 

Let us remark, finally, that we expect analogous results to be true for 
the Sterl in~Greensite {26'27) algorithm for self-avoiding random surfaces (or 
alternatively for random surfaces without spikes (28)) with fixed boundary B, 
in a lattice of dimension d~> 3. Indeed, let • (S)  be the minimum three- 
dimensional volume spanned by the union of S and S', where S' is a fixed 
surface with boundary B. Then one can easily prove the analogue of (7), 
namely 

2Tint, y/- ~ const x [ < ~ )  - < <  )2]  (13) 

and it is reasonable to expect that this bound is almost sharp. What is less 
clear, however, is the correct scaling behavior for <~U) and <U2>. By 

Table V. Results of  Least-Squares Fits of d = 4  Data 
to  the Logar i thmic Ansatz (11)~ 

flrnm q a Z 2 

0.1465 2.99 + 0.24 2.46 -- 0.33 41.18 (3 d.f., level = 6 • 10-9) 
0.1470 1.01 _ 0.43 5.38 • 0.62 10.65 (2 d.f., level = 0.5 % ) 
0.1473 0.82 + 0.65 5.68 + 0.98 10.49 (1 d.f, level = 0 .1% ) 

a Errors  are _+ one s tandard deviation. Significance level is the probabili ty that Z 2 exceeds the 
observed value. 
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analogy with walks, one might expect ~ 3  N3VRs, where N is the 
number of plaquettes in the surface; but this cannot be correct if V~s < 1/3, 
since it is easily seen on geometric grounds that ~ (S)>~cons t  x N(S). In 
particular, ~U ~ 43 cannot be true in dimension d >  8, where self-avoiding 
surfaces are believed 129) to have critical exponent VRs = 1/4 (just as for 
branched polymers); nor can it be true in dimension slightly less than 8, 
where VRs should be given by an expansion in e = 8 - d. Our best guess for 
what happens is the following: 

(a) In dimension d > 8 ,  random surfaces degenerate to shrunken 
tubes (i.e., width of order 1) surrounding a treelike branched 
polymer having ~ N  links. Therefore, VRs = Ir = 1/4 and ~ ~ iV. 

(b) In dimension d <  8, random surfaces become inflated tubes (i.e., 
width of order N ~ with 0 < ~ c < v m , )  surrounding a treelike 
branched polymer having ~ NI  ~ links. Then VRs = VBp > 1/4, (27) 

but 'Of ~ NI+'~ > N. 

The distinction between these two cases corresponds to the "breathing 
transition" studied by several authors. (29 3~} If this is the correct scenario, 
then statements to the effect that "self-avoiding random surfaces are in the 
universality class of branched polymers" must be interpreted with caution: 
branched polymers would describe correctly the linear size of random 
surfaces, but not (in d <  8) their volume. 
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